ò xn dx = [ x (
n + 1 )/ (n+1)] + C, n ¹ -1
y = x ( n ) Þ y ′ = n *
(x( n + 1 ) )
Ex: y= 3^((x^2)+4x) Þ
(dy/dx)= (3^((x^2)+4x) * Ln3) * (2x+4)
Ex: U sub: u = ((x^2)+4x) u’ = (2x+4) for above example.
Implicit diff:
(dy/dx) = n* x ( -1 ) * y =
n*x ( -1 ) * x ( n )
= n* x( n - 1 ) Þ (dy/dx) = n * x( n - 1
)
A Logaritym is an Exponent :
2^(x) =
5 à Log 2^(x) = log 5 à x log 2 = log 5 à x= [(Log 5) / (Log 2)] ≈ 2.32
e raised to exponent:
(d/dx) [e^(x)
] = e ^(x) à Derivative is itself.
That's right. The function
Integrate of e raised to
exponent: ò [e^(x) ] = e ^(x) +
C
===========================================================
Change of Base Formula:
log b x = log a x / log a b Also: log b x = Ln x / Ln b
Derivative with respect to x: (d/dx) log b x = 1 / x (Ln b)
y = b^(x) , b > 0, b ¹ 1 Þ Ln y = Ln b^(x) = x *(Ln b)
** Diff
Formula of b^(x) Þ (d/dx)
b^(x) =
b^(x)*(Ln
b)
===========================================================
ò
xn dx = Ln | x | + C, n ¹ -1
Ln y = Ln x ( n ) Þ Ln y = n Ln x Þ 1/y (dx/dy) = n * (1/x)
Ln e = 1, Ln 1 = 0 ….. 2x = 5 Þ x Ln 2 = Ln 5 Þ x = (ln 5) / (Ln 2) » 2.3219…
Definition of Natural
Log Function: Ln x = ò
(upper= x, lower=1) (1/t) dt, x > 0
ò (1/t) dt Þ f(t) = (1/t) Þ f(t) = t ( - 1 ) Þ f(t) = t ( - 1 + 1 ) / 0 f(t) = undefined.
Ln =ò (upper= x, lower=1) (1/t) dt Þ (dy/dx) [ Ln x } = (dy/dx) ò (upper= x, lower=1) (1/t) dt = 1/x,
x > 0
f(x) = Ln (expression) u = expression. f(u) =
Ln u Þ f
‘(x) = f ’(u) * u′ > Þ f ′ (x) = (u’/ u)
f(x) = Ln (x+1)^(1/2) Þ (1/2) Ln (x+1) Þ f ’(x)= (1/2) (d/dx) [ Ln (x+1) ] + Ln (x+1) (d/dx) (1/2)
(dy/dx) [ Ln u ] = (u ′ / u) Þ ò (u ′ / u)
dx = (dy/dx) [Ln | u | ] Þ ò (u ′ / u)
dx = Ln | u | + C
//=== Proof that
f(x) = Ln(x), f ‘(x) = (1/x)
========//
We know from the
discussion so far that ln(x) and ex are inverses of each other.
That means that if
ef(x) = eln(x) = x eq. 6.3-12
Now remember
that ex is its own derivative.
Using the
(we'll
ignore the middle term),
and
elementary derivatives to take the derivative of the right hand term,
we have
ef(x) f'(x) = 1 eq. 6.3-13a
But from eq.
6.3-12, we know that
So we
substitute x in for that.
x f'(x) = 1 eq. 6.3-13b
or
equivalently
1
f'(x) =eq. 6.3-13c
x
And that's
the derivative of the natural log function -- 1/x.
Remember it.
It comes up all the time.
/////==========================================================/////
/////= More
on Differential Formulas f(x)
= Ln (expression) u =
expression. =/////
f(x) = Ln x f ‘ (x) = (1/x)
Example: p(x) = Ln (x^² + cos ^² (x)) let u = (x^² + cos ^² (x))
with u-substitution: p(x) = Ln (u(x))
p ’(x) = (1/(u(x)) * u ‘(x) o r (u ‘(x) / u(x))
p ’(x) = (2x+2cos(x) -(-sin(x))/( (x^² + cos ^² (x)) or (2x-2cos(x)sin(x) )/( (x^² + cos ^² (x))
//=======================================================//
/////=
More on Differential
Formulas Log(ex-ression) =/////
y= log 3 (x^(2) + 4x) à Deriv
of (x^(2) + 4x) is (2x + 4)
Deriv of log 3
is (Ln(3)
y ‘
= (2x + 4) / (Ln(3) (x^(2) + 4x) )
//=======================================================//
Trig Identities:
ò sin (x) dx = - cos (x) +
C ò cos (x) dx =
sin (x) + C
ò tan(x) dx = ò (sin(x)/cos(x))dx = - ò( -sin(x))/(cos(x))dx
= - Ln |COS
X| + C
ò cot(x)
dx = ò (cos(x)/sin(x))dx
= Ln |sin
X| + C
ò sec(u) dx = Ln |sec u + tan u| + C ò csc(u) dx = - Ln |csc u + cot u| + C
================================================================
(d/dx) e^(u(x)) = (e^(u(x)) )*(u′(x)) Þ Composition therefore Chain Rule.
///======
Examples Derive of trig function in Ln ========///
y = (sin(x))^(x^2) Þ Ln y = Ln (sin(x))^(x^2) Þ Ln y = (x^2)*(Ln
(sin(x)))
(1/y)(dy/dx) = (x^2) * ((cos(x) / (sin(x))) + 2x
Ln(sin(x)) Þ
(dy/dx) = [ (x^2) * ((cos(x) / (sin(x))) + 2x Ln(sin(x)) ] * Y Þ
(dy/dx) = [ (x^2) * ((cos(x)
/ (sin(x))) + 2x Ln(sin(x)) ] * [(sin(x))^(x^2) ]
///======
Examples Derive of a function in Ln =========///
y = [(x-5)^(5) ] * [(x^(2) +4) ^(3) ] * [ (3x + 5) ^(2) ] Þ
** Ln y = Ln [(x-5)^(5) ] * [(x^(2) +4) ^(3) ] * [ (3x + 5) ^(2) ] Þ
** Ln y = (5) Ln [(x-5)] * (3)Ln [(x^(2) +4) ] * (2) Ln [ (3x + 5) ] Þ
(1/y)(dy/dx) = [ (5
* 1)/(x - 5) + (3 * 2x)/( x^(2) +4) + (2 * 3)/ (3x + 5) ] Þ
(dy/dx) = [ (5 )/(x - 5) + (6x)/(
x^(2) +4) + (6)/ (3x +
5) ]
* Y Þ
(dy/dx) = [ (5 )/(x - 5) + (6x)/( x^(2) +4) + (6)/ (3x + 5) ] * [[(x-5)^(5) ] * [(x^(2) +4) ^(3) ] * [ (3x + 5) ^(2) ]]
///======
Examples Inter to Ln Using U Substitution =========///
ò (4 x e ^(x^(2)
+ 2)dx Þ Let:
u =(x^(2) + 2) then: du
= 2x dx (have to make 4 adj)
2 ò (2 x e ^(x^(2) + 2) dx = 2
ò e^(u) du = 2
e^(u) + C = 2 e^( x^(2) + 2) + C
///=== More
Examples Inter to Ln Using U Substitution =========///
ò(9x^(2) – 6)/ (3x^(3)-6)dx
Þ Let: u =(3x^(3)-6) then: du = (9x^(2) – 6) dx (is deriv of denominator)
ò((du)/(u))
= Ln|(u)|+ c = Ln|(3x^(3)-6)|+ c
Always
enclose |u| with absolute symbols for safety
with Ln.
///=== More
Examples Inter to Ln Using U Substitution =======///
This one has Inter with upper
and lower limits that need to adj
The ò upper
limits = e. lower limits = 1.
ò (Ln x)/(2x) Since
Ln(e) = 1, then u=(Ln x), and du= (1/x) (but it is 2x, multiply by ½)
½ ò (Ln x)/(x) Since u is used, adj limits
to match. Upper = 1, lower = 0 Þ
½ ò (u)(du) = ½ [(u^(2)/2]
= [(1/4) – 0] = ¼
///=== More
Examples Inter to Ln Using U Substitution with trig f(x) =====///
first: tan= (sin/cos) Þ u = cos(x).
Þ du = - sin(x) (because neg sin,
multiplyò by –1)
ò tan(x)dx = - ò (- sin(x)
/ cos(x)) = - ò (du/u) = - ln|u|
+ C = - ln| cos(x)| + C
///=== /////= Integration =//////// ===///
ò e^(u) du = e^(u) + C
or Þ ò e^(u) u’ dx = e^(u) + C
other than e Þ 5 = e^(Ln5) , y = 5, Ln y = Ln 5 Þ Therefore y = e^(Ln5)
///===/////=
Integration Example=////////===///
ò 2 ^(x) dx Þ 2 = e ^(ln2)
Þ or ò
2 ^(Ln2) x dx
Let: u = (Ln2) x and then Let: u ’ = Ln2 ( u’ or du)
= (1/Ln 2) ò 2 ^(Ln2) x Ln2 dx (adjustment was made for 2dx by multiply of (1/Ln 2))
= (1/Ln 2) * e ^(Ln2)
x + C
///===
/////= Population =///// ===///
Rate of change of Population is Proportional
to Population.
P is for
Population, k is for Rate of Change, t is
for time. (Rate of change always involves time.)
(dP/ dt) = k * P Þ ò(1/P)dP = ò k dt Þ
Ln P = k * t + C1 Þ P = e^(kt + c1) = e^(kt
) e^( c1)
= Ce^(kt ) .
P
= Ce^(kt
) .
P(0) =
Ce(0) is Population at zero
time
Use earliest time
as your time zero.
//// Example of Population Growth: ////
P(0) = 100
Million, P(20) = 120
Million, P(40) = ?
P = Ce^(kt
) but now we know that C
= 100
P
= 100e^(kt ) Formula
to use to solve for k
P at 20
yrs was P(20) = 120 Million
120 = 100 e^(k*20 ) ..Now solve
for k
(120/100) = e^(k*20 ) Þ Ln(6/5)= Ln e^(k*20 ) Þ
Since Ln e = 1
then Ln(6/5)= (k*20 ) Þ (Ln(6/5))/ 20 = k
k ≈ 0.009116 now place
into formula to get population of any year.
P = 100e ^( 0.009116
* t )
Formula to use to solve for population
of any year
P(40) =100e ^( 0.009116 * (40) ) Solve for P. P ≈144 Million.
**** if asked about how long to double…
then double C and make it the new PÞ
200
= 100e^( 0.009116
* t ) Þ 2 = e^(
0.009116 * t ) Þ Ln 2 = 0.009116 * t
Now solve for t
Þ (Ln 2) / (0.009116) =
t Þ t ≈ 76.0357 yrs
answer: It takes about 76 years for the population to
double. .
**Note the growth rate Þ (Ln 2) / (0.009116) was for 2 yrs…
Therefore: To
triple would be Þ (Ln
3) / (0.009116)
Just change the number after Ln to apply that
rate of growth.
///=== /////= Temperature =///// ===///
Newton’s Cooling Law: (dT/ dt)= k(T
– Ts)
T0 is the
initial temperature of the object;
C is the temperature of the environment;
k is the cooling rate constant (constant for a particular material);
t is the time since T0; and
e is the exponential function.
** note: as temperature of Medium and Object get
closer, cooling is slower.
(dT/ dt)= k(T – Ts) Þ
(1/(T – Ts))dT = k dt Þ
Ln|(T – Ts)| = k*t +
C1 Þ
|(T – Ts)|= e^(k*t +c1) =
e^(k*t) + e^(c1)
Þ C * e ^(k*t)
Final
formulas:
|(T – Ts)|= C * e ^(k*t)
Þ T(t) = Ts + C * e ^(k*t)
//// Example of Change in Temperature: ////
Ts =
44, T( 0 ) = 70
T( 2 ) = 58,
T( 9 ) = ???
T(t)
= Ts + C * e ^(k*t)
Þ Since the Surrounding temp is
44 then:
T(t)
= 44 + C * e ^(k*t)
Þ is our formula to work with,,, now solve C.
70 = 44
+ C * e ^(k*t) Þ Subtract
44 to start isolating C.
(26) = C * e ^(k*t) Þ But time is
Zero there for e cancels
C = 26 Þ Now we substitute the C into the problem.
**** T(t) = 44
+ 26 * e ^(k*t) Þ Now solve
for k by using know temp & time.
58 = 44 + 26 * e ^(k*(2)
Þ Subtract 44 to start isolating k.
14 = 26 * e ^(k*(2)
Þ Divide by 26 to get K alone.
(14/26) = e ^(k*(2) Þ change to
Ln so we can get Ln e = 1.
(Ln(14/26)) = Ln e ^(k*(2) Þ Eliminate the e since Ln e = 1.
(Ln(14/26)) =(k*(2)) Þ Last step is to divide by 2 (time).
(Ln(14/26))/ (2)) =(k)Þ Solve for k. k ≈
-0.30952
T(t)
= 44
+ 26 * e ^(-0.30952 * t) Þ Formula to
use to solve for any time.
T( 9 ) = 44 + 26 * e ^(-0.30952 * 9) Þ Plug and Play T( 9 ) ≈ 45.6039
Therefore: After 9 minutes the temperature will be
45.6 degrees.
.